

SSHRC≣CRSH

Coastal Climate Adaptation Strategies

Multicriteria decision evaluation of adaptation strategies for vulnerable coastal communities

Hooman Mostofi Camare M.Sc. System Science University of Ottawa

SSHRC **=** CRSH

Coastal Climate Adaptation Strategies

Introduction

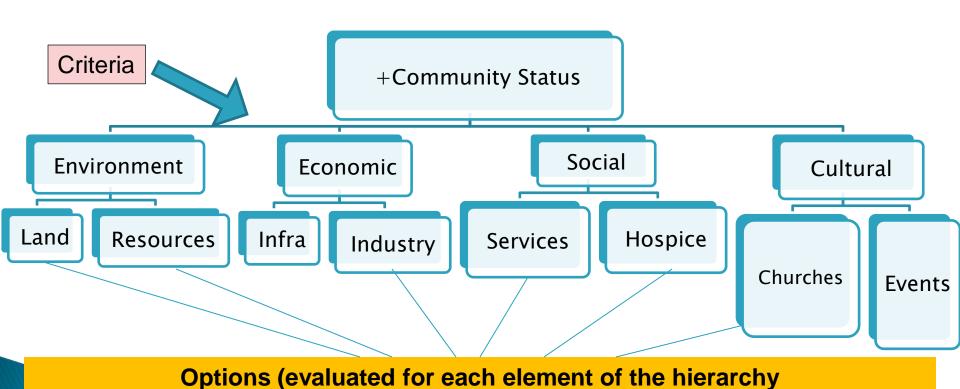
- Coastal community climate impacts
- Multi dimensionality of communities (Economic, Environmental, Cultural and Social)
- Vulnerability of coastal communities
- Multiple Stakeholders (Government, Industry, NGOs, Professionals, Community members)

SSHRC **=** CRSH

Coastal Climate Adaptation Strategies

Objectives

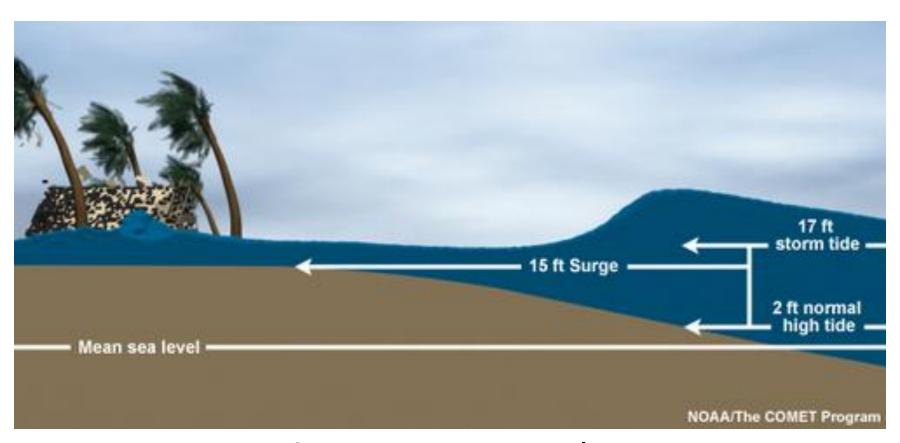
- Profiling the community along four pillars (Environment, Economic, Social and Cultural)
- 2. Understand storms and their impacts
- 3. Examine community vulnerability
- Support decisions by engaging the community and applying priorities



SSHRC **=** CRSH

Coastal Climate Adaptation Strategies

Decision Hierarchy / Community Profile



CANADA-CARIBBE AN

SSHRC≣CRSH

Coastal Climate Adaptation Strategies

Storm surge vs. storm tide

Source: NHC (2010)

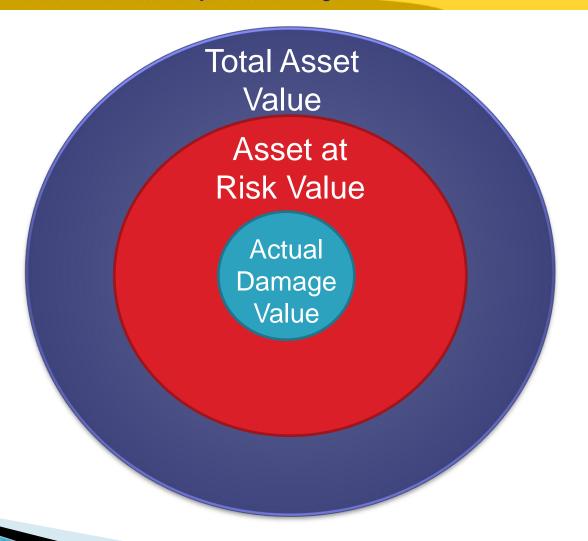
idrc 💥 Crdi

CANADA-CARIBBEAN

SSHRC≣CRSH

Coastal Climate Adaptation Strategies

Scenario	Storm	Water level	Speed (kph)		Wind (kph)		Pressure (mb)	
			Scenario	Storm	Scenario	Storm	Scenario	Storm
II	Bertha	1.48	40-49	35	57-78	130	1000- 1009	973
III	Lili	1.63	50-59	70	79-100	75	990-999	995
IV	Subtrop 1989	-	60-69	81	101-122	110	980-989	984
V	Evelyn	2.05	70-79	59	123-144	130	970-979	996
VI	Michael	-	80-89	87	145-166	160	960-969	965



CANADA-CARIBBEAN

SSHRC≣CRSH

Coastal Climate Adaptation Strategies

nt						
Economic	\$1,356,034	\$1,812,502	\$2,589,790	\$3,605,955	\$4,555,173	\$5,482,897
Social	\$165,104	\$198,296	\$231,488	\$267,481	\$302,872	\$336,064

\$332,425

\$4,282,363

III

\$1,128,660

IV

\$1,266,360

\$473,400

\$5,613,196

\$1,363,140

\$749,825

\$6,971,010

II

\$1,034,040

\$236,650

\$3,281,488

Storm

Scenario

Environme

Cultural

\$940,500

\$165,875

\$2,627,513

Pillar

Total \$\\\ \psi_{2,027,313} \\\ \psi_{3,201,100} \\\ \psi_{1,202,303} \\\ \psi_{3,013,170} \\\ \psi_{0,771,010} \\\ \psi_{0,530,50} \\ \psi_{0,530

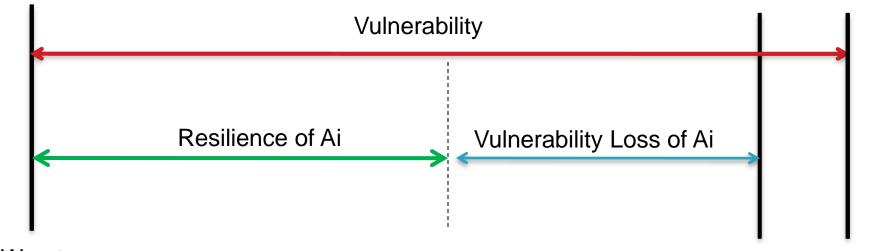
Isle Madame Storm Damage Estimates

VI

\$1,461,000

\$1,276,250

\$8,556,211



CANADA-CARIBBEAN

SSHRC≡CRSH

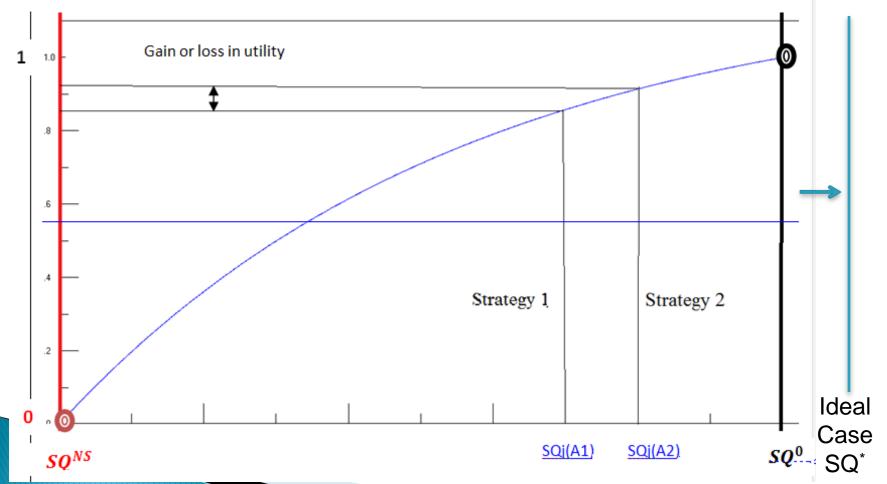
Coastal Climate Adaptation Strategies

Worst Case-SSj/No Strategy

SSj/Apply Strategy Ai Best Ideal Case Case SQ⁰(u) SQ^{*}

Vulnerability: $V^{j}(u) = SQ^{j}(u) - SQ^{0}(u)$

Resilience: $R^{j}(A_{i}, u) = SQ^{j}(u) - SQ^{j}(A_{i}, u)$



SSHRC≣CRSH

Coastal Climate Adaptation Strategies

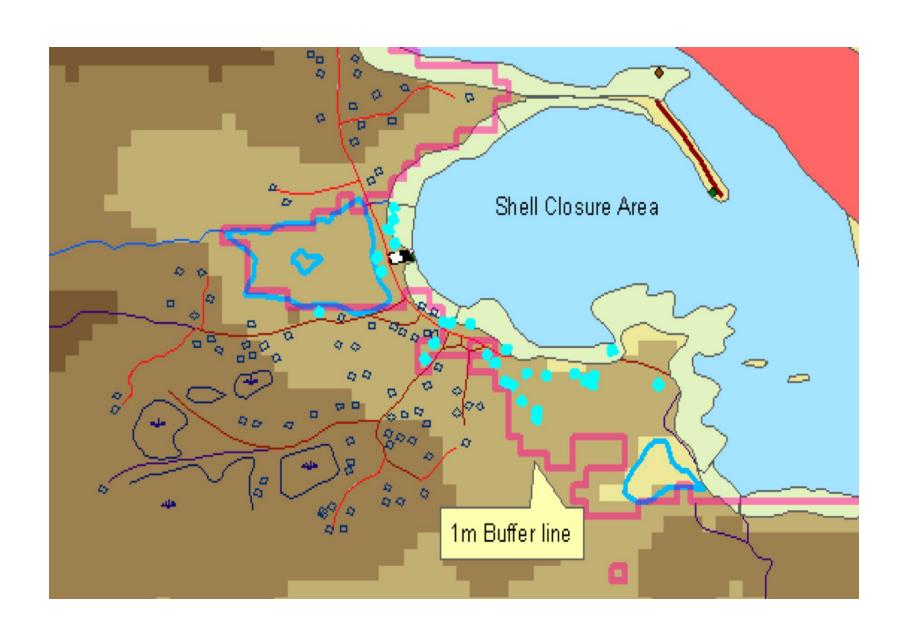
General utility function

SSHRC≣CRSH

Coastal Climate Adaptation Strategies

Case Study: Little Anse Breakwater

The Reporter (2010)



SSHRC≣CRSH

Coastal Climate Adaptation Strategies

Little Anse Strategy Evaluation

- Define Community Profile and Status Quo assets
- Define Storm Scenario and estimate "at risk", and damages
- Feedback from all participants priorities for criteria
- Combine all participants
- Rank alternatives

CANADA-CARIBBEAN

SSHRC **=** CRSH

Coastal Climate Adaptation Strategies

Little Anse Hierarchy and water level scenarios Goal: Adaptation of Little Anse community to storm surge events

- Economic
 - Built Environment
 - Houses
 - Private buildings
 - Public Works
 - Roads
 - Wharf
 - Wells
 - Cost of adaptation
- Environmental
 - <u>Land Use</u>
 - Residential land
 - Lake
 - Trees
- Cultural
 - Community center
 - Church grounds
- Social
 - Labour earnings
 - Safety (people over 60 years of age)
 - Safety (people under 14 years of age)

Table 3.7. Water level for each scenario

Scenario	Water level
I	1- 1.25
II	1.26 – 1.5
III	1.51 – 1.75
IV	1.76 – 2.00
V	2.01 – 2.25
VI	More than 2.25

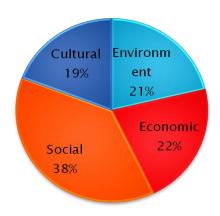
SSHRC≣CRSH

Coastal Climate Adaptation Strategies

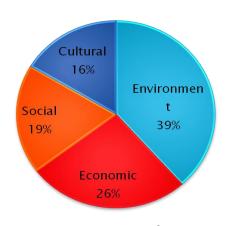
MCDM + Multiple Participants

- 1. **Community**: representatives of the community at large
- Local Government: representatives of local (municipal) government
- 3. **Business/Industry**: community industries
- 4. <u>Professional</u>: professionals providing service to the community, e.g., lawyers, doctors, nurses, engineers, etc.

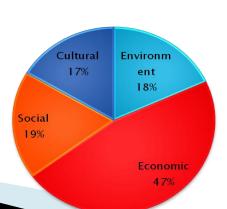
CANADA-CARIBBEAN

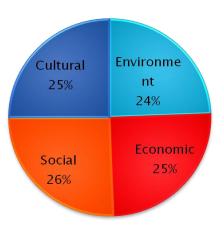


SSHRC≣CRSH


Coastal Climate Adaptation Strategies

Participants


Local Government


Professionals

Business/Industry

Community


```
Goal:Adaptation of Little Anse community to storm surge events
Economic (L: .285)
  ■ Built Environment (L: .278)
      Houses (L: .668)
    Buildings (L: .332)
  Public Works (L: .484)
    Roads (L: .451)
    Wharfs (L: .245)
    Adaptation cost (L: .238)
Environment (L: .224)
  i Land Use (L: 1.000)
    Residential Land (L: .511)
    ____ Lake (L: .260)
    Trees (L: .229)
□ Cultural (L: .197)
  Community Center (L: .507)
  Church grounds (L: .493)
Income loss (L: .272)
  Safety at risk (people over 60) (L: .412)
  Safety at risk (people under 14) (L: .316)
```

Combined weights of AHP hierarchy

SSHRC**≡**CRSH

Coastal Climate Adaptation Strategies

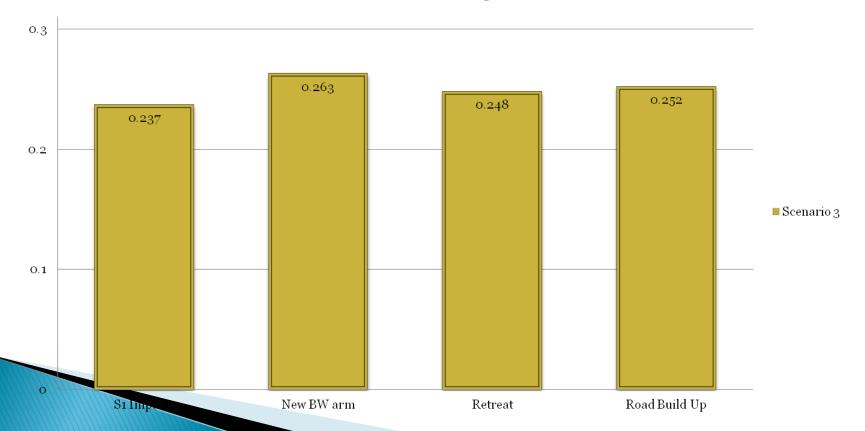
Adaptation Strategies

- Protection
 - Close the existing opening and create a new north facing opening(\$4.6M)
 - Create a modified opening with a new breakwater arm extending from the south (\$5.05)
 - Rehabilitation of the existing breakwater (\$1.7M)
- 2. Accommodation
 - New road build up (\$1.74M)
- 3. Retreat
 - Move people/houses (\$2.33M)
- Status Quo do nothing

SSHRC≣CRSH

Coastal Climate Adaptation Strategies

Breakwater strategies

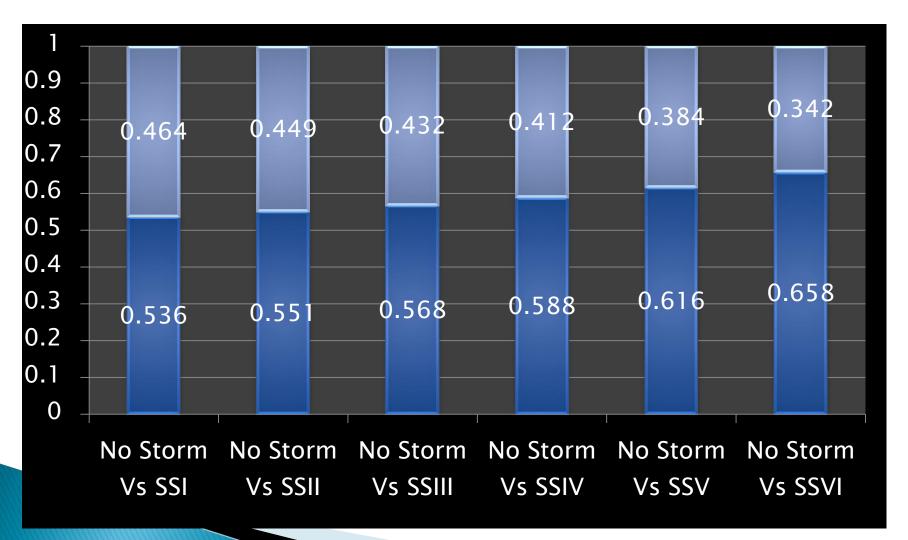


SSHRC≡CRSH

Coastal Climate Adaptation Strategies

Comparison of "Retreat", "Road Build Up" and "New breakwater arm" strategies on Storm Scenario III impacts (Combined results)

Scenario 3



CANADA-CARIBBEAN

SSHRC≣CRSH

Coastal Climate Adaptation Strategies

CANADA-CARIBBEAN

SSHRC≣CRSH

Coastal Climate Adaptation Strategies

Conclusion

- Multi criteria decision making does not push for a single strategy, it only shows the tradeoffs.
- The AHP framework for evaluating adaptation strategies is important for small communities decision support.
- Multi criteria decision making engages multiple participants and analysis of decision options.